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Abstract—At extreme scale, irregularities in the structure of
scale-free graphs such as social network graphs limit our ability
to analyze these important and growing datasets. A key challenge
is the presence of high-degree vertices (hubs), that leads to
parallel workload and storage imbalances. The imbalances occur
because existing partitioning techniques are not able to effectively
partition high-degree vertices.

We present techniques to distribute storage, computation,
and communication of hubs for extreme scale graphs in dis-
tributed memory supercomputers. To balance the hub process-
ing workload, we distribute hub data structures and related
computation among a set of delegates. The delegates coordinate
using highly optimized, yet portable, asynchronous broadcast
and reduction operations. We demonstrate scalability of our new
algorithmic technique using Breadth-First Search (BFS), Single
Source Shortest Path (SSSP), K-Core Decomposition, and Page-
Rank on synthetically generated scale-free graphs. Our results
show excellent scalability on large scale-free graphs up to 131K
cores of the IBM BG/P, and outperform the best known Graph500
performance on BG/P Intrepid by 15%.

I. INTRODUCTION

Analyzing large scale-free graphs such as social networks
is a challenging and important problem. Graphs are used in
a wide range of fields including computer science, biology,
chemistry, and the social sciences. These graphs may model
complex relationships between individuals, proteins, chemical
compounds, etc. Graph datasets from many important domains
can be classified as scale-free, in which the vertex degree-
distribution asymptotically follows a power law distribution.
In scale-free graphs, the presence of high-degree vertices
(hubs) can create significant challenges for balancing storage,
processing, and communication of parallel and distributed
algorithms. The imbalances occur because existing partitioning
techniques are not able to effectively partition high-degree
vertices.

In this work, we present a new graph partitioning technique
and computation model that distributes the storage, computa-
tion, and communication for hubs in large scale-free graphs. To
balance the processing workload, we distribute hub vertex data
structures and related computation among a set of delegates.
An illustration of a graph before and after partitioning the
hub is shown in Figure 1. Each partition containing a portion
of the hub is assigned a local representative of the hub. One
representative is distinguished as the controller, and the others
are the delegates. The controller and its delegates coordinate
using asynchronous broadcast and reduction operations rooted
at the controller.

Our delegate technique leads to significant communication
reduction through the use of asynchronous broadcast and
reduction operations. For hubs whose degree is greater than
the number of processing cores, p, using delegates reduces
the required volume of communication. This reduction occurs
because a broadcast, rooted at the controller, requires only
O(p) communication, while without delegates the volume of
communication is proportional to the hubs’ degree.

We develop the delegate partitioning and computation
model by extending our asynchronous visitor model [1], [2].
Using the visitor computation model, the controller may
broadcast visitors to all its delegates. Similarly, the delegates
may participate in an asynchronous reduction rooted at the
controller.

We demonstrate the approach and evaluate performance
and scalability using Breadth-First Search (BFS), Single
Source Shortest Path (SSSP), K-Core Decomposition, and
PageRank on synthetically generated scale-free graphs. The
data-intensive community has identified BFS as a key chal-
lenge for the field and established it as the first kernel for
the Graph500 benchmark [3]. We demonstrate scalability up
to 131K cores using the IBM BG/P supercomputer, and show
portability on a standard HPC Linux cluster. We compare our
work to existing approaches for processing scale-free graphs
in distributed memory, most notably 2D graph partitioning [4],
[5] by comparing our algorithm to the best known Graph500
performance on IBM BG/P Intrepid supercomputer at Argonne
[6].

Summary of our contributions:
• We present a new algorithmic technique, called ver-

tex delegates, to load balance the computation, com-
munication, and storage associated with high-degree
vertices. It uses asynchronous broadcast and reduc-
tion operations to significantly reduce communication
associated with high-degree vertices.

• We demonstrate our delegate techniques using
Breadth-First Search (BFS), Single Source Shortest
Path (SSSP), K-Core Decomposition, and Page-Rank.

• We demonstrate excellent scalability up to 131K cores
on BG/P Intrepid, and portability on a standard HPC
Linux cluster. Our algorithm improves the best known
Graph500 results for BG/P Intrepid, a custom BG/P
implementation, by 15%.
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(b) Distributed Delegates Partitioning.
P1 contains the controller.
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(c) Distributed Delegates Partitioning after bal-
ancing.

Fig. 1: Comparison of 1D partitioning vs. distributed delegates partitioning for the same graph. In 1D partitioning (a), V0 is a high-degree
vertex that maps to a single partition and may lead to imbalances. In distributed delegates partitioning (b), V0 is distributed across multiple
partitions while low-degree vertices remain 1D partitioned. V0C is the controller assigned to P1. Delegates V0D0 and V0D1 are assigned to
P0 and P1. After balancing (c), edges e3 and e5 have been relocated to balance the partitions, and are now delegate cut edges.

II. PRELIMINARIES

A. Graphs, Properties & Algorithms

In a graph, relationships are represented using vertices and
edges. A vertex may denote an object or concept, and the
relationships between vertices are expressed by edges. Graphs
provide a framework to analyze complex relationships among
data, and are used in a wide variety of fields.

Many real-world graphs can be classified as scale-free,
where the distribution of vertex degrees follows a scale-
free power-law [7]. In a scale-gree graph, the majority of
vertices have small degree, while a select few have a very
large degree, following the power-law distribution. These high-
degree vertices are called hubs, and create multiple scaling
issues for parallel algorithms, discussed further in Section II-C.

We demonstrate our techniques using Breadth-First Search,
Single Source Shortest Path, PageRank, and K-Core Decom-
position.

1) Breadth-First Search (BFS): BFS is a simple traversal
that begins from a starting vertex and explores all neighboring
vertices in a level-by-level manner. Taking the starting vertex
as belonging to level 0, level 1 is filled with all unvisited
neighbors of level 0. Level i + 1 is filled with all previously
unvisited neighbors of level i; this continues until all neighbors
of level i have been visited. The Graph500 benchmark, estab-
lished in 2010, selected BFS as the initial benchmark kernel
using synthetic scale-free graphs.

2) Single Source Shortest Path (SSSP): A SSSP algorithm
computes the shortest paths in a weighted graph from a single
source vertex to every other vertex. In this work, we only
address non-negatively weighted graphs. Our approach to the
SSSP problem can be viewed as a hybrid between Bellman-
Ford [8] and Dijkstra’s [9] SSSP algorithms.

3) PageRank: PageRank is a network analysis tool that
ranks vertices by their relative importance [10]. Designed to
rank pages on the Web, PageRank models a random web surfer
that randomly follows links with random restart. It is often
iteratively computed as a stochastic random walk with restart,
where the starting distribution is a uniform distribution across
all vertices.

4) K-Core Decomposition: The k-core of a graph is the
largest subgraph where every vertex is connected to at least
k other vertices in the subgraph. The k-core subgraph can be
found by recursively removing vertices with less than degree
k. K-Core has been used in a variety of fields including the
social sciences [11].

B. Synthetic scale-free graph models

We use two synthetic scale-free graph models for our
scaling studies. All graphs are undirected, and generated
with a number of vertices and edges that is a power of
two. The graphs are sparse, with an average degree fixed at
16. After graph generation, all vertex labels are uniformly
permuted to destroy any locality artifacts from the generators.
This methodology was chosen to conform closely with the
Graph500 benchmark.

1) Graph500 RMAT: Generates scale-free graphs based
on a recursive matrix model [12]; we follow the Graph500
V1.2 specification for generator parameters. We used the open
source RMAT implementation provided by the Boost Graph
Library [13].

2) Preferential Attachment (PA): Generates scale-free
graphs based on the Barabási-Albert model [7]. We used a
generalized PA model by Móri [14], where the probability of
connecting to a vertex of degree d is proportional to d + β,
where β > −16. By varying the value of β, we can control the
rate in which hubs grow. For our studies, we chose β values
of -12, -13, and -14. The β value of -12 was used to roughly
match Graph500 RMAT’s hub growth, and the β values of
-13 and -14 were chosen to increase hub growth and stress the
delegate approach. We parallelize the generation of large PA
graphs using similar techniques developed by Machta [15].

The growth of the largest hub vertex for the graph models
in our study is shown in Figure 2(a).

C. Challenges created by high-degree vertices

An imbalanced partitioning of edges leads to communi-
cation and work imbalance between the partitions, inhibiting
overall performance and scalability. In scale-free graphs, the
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Fig. 2: Hub growth (a) for scale-free RMAT and preferential attachment graphs. Weak scaling of partition imbalance for 1D (b) and 2D
(c) partitioning; imbalance computed for the distribution of edges per partition. Weak scaled using 262,144 vertices per partition. The number
of vertices per partition matches the experiments on BG/P Intrepid shown in Sections VI-B and VI-E. Both 1D and 2D partitioning produce
imbalanced partitioning, with the increased imbalance when the graph has greater hub size (e.g. PA β = −14). 2D partitioning is significantly
better than 1D for all graphs in our studies; however, our distributed delegates partitioning produces perfectly balanced partitions for these
weak scaled graphs.

core challenge involves creating a balanced partitioning of
edges in the presence of power-law vertex degree distributions.

The simplest partitioning is 1D, where the entire adjacency
list of a vertex resides on a single partition; this is commonly
called row wise when the graph is considered as a sparse ma-
trix. When scale-free graphs are 1D partitioned, the partitions
having high-degree vertices may contain significantly more
edges than the average. This can overwhelm a single partition,
limiting performance or overflowing memory.

In 2D partitioning, the graph is partitioned according to
a checkerboard pattern of the graph’s adjacency matrix so
that the adjacency lists of all vertices are split over O(

√
(p))

partitions, which greatly improves the partition balance. Recent
work using 2D graph partitioning has shown the best results for
large scale HPC systems [4], [5], [16]. However, 2D partition-
ing has serious disadvantages at scale. When processing sparse
graphs, each 2D block may become hypersparse, i.e., fewer
edges than vertices per partition [17], which will ultimately hit
a scaling wall where the amount of local algorithm state per
partition exceeds the capacity of the compute node. Recently,
Boman, et al. have combined 1D graph partitioning (e.g.,
ParMETIS) with a 2D layout to achieve better partition balance
than traditional 2D block partitioning [18]. The amount of
algorithm state (e.g., BFS level) stored per partition scales with
O( V√

p ), where V is the total number of vertices and p is the
number of partitions. We compare our approach to the best
known implementation for BG/P Intrepid, which uses a 2D
graph partitioning [6].

A comparison of partition imbalances for 1D and 2D par-
titioning is shown in Figure 2, where imbalance is calculated
as the percent difference in the number of edges of the largest
partition versus the average. The comparison shows the scale-
free graphs used in our studies weak-scaled with the number
of partitions in the x-axis. The weak-scaling matches the
scaling studies shown in Sections VI-B and VI-E. Both 1D
and 2D partitioning produce imbalanced partitioning, with the
increased imbalance when the graph has greater hub size (e.g.
PA β = −14). 2D partitioning is significantly better than
1D for all graphs in our studies. However, 2D partitioning

is still 11% imbalanced for the Graph500 RMAT graph at
131k partitions and 235 vertices. Our distributed delegates
partitioning produces well balanced partitions for these weak
scaled graphs.

D. Asynchronous Visitor Traversals

Our framework uses an asynchronous visitor queue ab-
straction [2]. The visitor queue provides the parallelism and
creates a data-driven flow of computation. Parallel algorithms
using this framework have been developed for breadth-first
search, single source shortest paths, connected components,
k-core, page-rank, and triangle counting [1], [2]. Traversal al-
gorithm developers define vertex-centric procedures to execute
on traversed vertices. Vertex visitors have the ability to pass
visitor state to other vertices. The visitor pattern is discussed
in Section IV-A.

Each asynchronous traversal begins with an initial set
of visitors, which may create additional visitors dynamically
depending on the algorithm and graph topology. All visitors are
asynchronously transmitted, scheduled, and executed. When
the visitors execute on a vertex, they are guaranteed exclusive
access to the vertex’s data. The traversal completes when all
visitors have completed, and the distributed queue is globally
empty.

III. DISTRIBUTED DELEGATES

To balance the storage, computation, and communication
of high-degree hubs, we distribute hub data structures and
related computation amongst many partitions. Each partition
containing a portion of the hub data structure is assigned
a local representative; one representative is distinguished as
the controller, and the others are designated as delegates.
An illustration of a delegate partitioned graph is shown in
Figure 1(b). The controller and its delegates communicate via
asynchronous broadcast and reduction operations rooted at the
controller.

The delegates maintain a copy of the state for the vertex
and a portion of the adjacency list of the vertex. Because



a delegate only contains a subset of a vertex’s edges, the
operations performed may need to be coordinated across
multiple delegates.

A. Delegate Partitioning in Visitor Framework

We have integrated delegate partitioning into our asyn-
chronous visitor framework. Vertices with degree greater than
dhigh are distributed and assigned delegates, while vertices
with low-degree are left in a basic 1D partitioning. When
a visitor visits a delegate, it only operates on the subset of
adjacent edges managed by the delegate; it does not operate
on the entire distributed adjacency list.

Ideally, the outgoing edges of high-degree vertices are
stored at the edges’ target vertex location. Such edges are
called co-located because their delegate and target vertex
reside on the same partition. Co-located edges do not require
additional communication beyond the delegates’ broadcast
and reduction communication, so having multiple co-located
edges per individual delegate leads to an overall reduction in
communication.

This technique alone is not sufficient to produce balanced
partitions. In some cases, including our experiments, simply
storing edges of high-degree vertices at the edges’ target
vertex location can lead to imbalance amongst the delegates.
To balance partitions, the delegated edges belonging to high-
degree vertices can be moved to any partition at the cost of
additional communication for the non-co-located edges.

B. Distributed Delegate Partitioning

In this section, we describe a simple technique to partition
an input graph using distributed delegates. A distributed input
graph, G(V,E) with vertex set V and edge set E, is partitioned
into p partitions in three steps. First, the high degree vertices
in G are identified. Second, the edges in E belonging to low-
degree vertices are 1D partitioned such that all of a low-degree
vertex’s edges reside on a single partition. The edges in E
belonging to high-degree hubs are partitioned according to the
partition of the edge target vertex. Finally, the partitions are
balanced by offloading delegate edges from partitions with an
above average number of edges.

The input distributed edge set, E, is assumed to be un-
ordered, and is distributed over the p partitions. Undirected
edges are represented by creating directed forward and back-
ward edges that may reside on different partitions.

First, the high-degree vertices with degree larger than a
threshold, dhigh, are identified. Then the distributed edge set,
E, is partitioned into two distributed edge sets: Ehigh for
edges whose source vertex is high-degree, and Elow for edges
whose source vertex’s degree is less than dhigh. Delegates are
created on all partitions for high-degree vertices. The degree of
every vertex must be accumulated to identify the high-degree
vertices, which may require an all-to-all exchange amongst the
partitions.

The second step uses a simple vertex-to-partition mapping
(e.g., round-robin) to define a 1D partitioning. The edges in
Elow are distributed according to the partition mapping of the
source vertex of each edge. The edges in Ehigh are distributed
according to the target vertex partition mapping of each edge.

In the worst case, every edge will need to be relocated to a new
partition which may require an all-to-all exchange amongst the
partitions.

The third step corrects partition imbalances. The number of
edges locally assigned to each partition (both Ehigh and Elow)
can be imbalanced. An edge in Ehigh may be reassigned to any
partition, because the edge’s source is a delegated vertex. A
new distributed edge set Eoverflow is created and filled with
edges of Ehigh from partitions with greater than |E|

p edges.
The edges in Eoverflow are distributed such that the local
partitions’ sum of edges |Elow|+ |Ehigh|+ |Eoverflow| = |E|

p .
For performance reasons, minimizing the size of Eoverflow is
desirable, because the edges are located on different partitions
than their targets. An illustration of a delegate partitioned graph
after edge balance is shown in Figure 1. Here, edges e3 and e5
have been relocated to partition p1 to balance the partitions,
and edges e3 and e5 are now delegate cut edges. In the worst
case, each partition will either send or receive overflow edges
and may require an all-to-all exchange amongst the partitions.

The complete partitioning can be accomplished in three
parallel operations over the edges, O( |E|

p ). In the worst case,
each step may require all-to-all communication, O(p2). This
partitioning cost is asymptotically the same as partitioning an
unorganized edge set using 1D or 2D partitioning.

C. Benefits of Delegate Partitioning

Delegate partitioning leads to significant communication
reduction by co-locating delegate edges. The reduction in
communication occurs because a broadcast or reduction, rooted
at the controller, requires only O(p) communication, while
without delegates the volume of communication is proportional
to the degree of the hub. Experimentally, we show the percent-
age of co-located edges in Section VI-A, Figure 4(c).

Delegate partitioning also creates a balanced number of
edges in each partition. There always exists a degree threshold,
dhigh, that will produce a balanced partitioning. Consider
dhigh = 0, every vertex with edges is delegated, and all
edges are eligible to be reassigned to any partition to ensure
a balanced partitioning. Setting dhigh < p could result in
increased communication, so it is advisable to place a lower
bound at p. Experimentally, we show the partition imbalance
as dhigh is swept in Section VI-A, Figure 4(c). In our weak-
scaling experiments shown in section VI, we set dhigh = p
and delegate partitioning produced evenly balanced partitions.

D. Comparison of partitioning techniques

Delegate partitioning is similar to vertex splits in Pow-
erGraph [19]; however, PowerGraph’s approach to distribut-
ing high-degree vertices is different in an important way.
PowerGraph attempts to distribute a high-degree vertex over
a minimal number of workers, in contrast to our approach
which distributes across all edge target partitions O(p). By
storing edges directly on an edge’s vertex target location,
our approach creates co-located edges that when combined
with efficient broadcasts and reductions can reduce overall
communication. PowerGraph has been designed for the cloud
computing environment (e.g., Amazon EC2), and has not been
tuned for the HPC environment.



TABLE I: Delegate Visitor Behaviors

Behavior Description Complexity Examples
pre visit parent Visitor is sent to parent delegate and executes pre visit. If pre visit returns

true, visitor continues to visit parents until the controller is reached.
O(htree) BFS, SSSP

lazy merge parent Lazily merges visitors using an asynchronous reduction tree. Merges visitors
locally, and sends to parent in reduction tree when local visitor queue is idle.
When controller is reached, normal visitation proceeds. Requires that visitors
provide a merge function.

O(htree) k-core

post merge Visitors are merged into parent reduction tree after traversal completes.
Requires that visitors provide a merge function.

O(htree) PageRank

TABLE II: Controller Visitor Commands

Behavior Description Complexity
bcast delegates Controller broadcasts the current visitor to all delegates. O(htree)
terminate visit Controller terminates the current visitor without sending to delegates. Θ(1)

TABLE III: Visitor Procedures and State

Required Description
pre visit( ) Performs a preliminary evaluation of the state and returns true if the visitation should proceed,

this can be applied to delegate vertices.
visit( ) Main visitor procedures.

operator<( ) Less than comparison used to locally prioritize the visitors in a min heap priority queue.
vertex Stored state representing the vertex to be visited.

delegate behavior Desired delegate visitation behavior, see Table I.
merge( visitor a, visitor b ) Returns the merge of two visitors. Used for lazy merge parent and post merge behaviors.

Our previous work developed an edge list partitioning
(ELP) technique that creates balanced partitions for scale-
free graphs [2]. Ghost verticies were used to reduce com-
munication; however, they could only be applied to a small
set of algorithms such as BFS, not PageRank or K-Core.
ELP did not parallelize the processing and communication of
hubs, or attempt to create co-located edges. The reductions in
communication achieved by delegate partitioning exceeds ELP
and supports a richer set of graph algorithms.

1D and 2D are previously discussed in Section II-C.
2D partitioning is the state of the art for leadership class
supercomputers. Our comparison to the best known Graph500
results for BG/P Intrepid in Section VI-E used 2D partitioning
[6].

IV. ASYNCHRONOUS VISITOR QUEUE

The driver of our graph traversal is the distributed asyn-
chronous visitor queue [2]; it provides the parallelism and
creates a data-driven flow of computation. Traversal algorithms
are created using a visitor abstraction, which allows an algo-
rithm designer to define vertex-centric procedures to execute
on traversed vertices with the ability to pass visitor state to
other vertices.

A. Visitor Abstraction

In our previous work, we used an asynchronous visitor pat-
tern to compute Breadth-First Search, Single Source Shortest
Path, Connected Components, k-core, and triangle counting
in shared, distributed and external memory. We used edge-list

partitioning and ghosts to address the scaling challenges cre-
ated by high-degree vertices [2]. We showed these techniques
to be useful; however, the application of ghosts was limited to
simple traversals such as BFS.

In this work, we build on the asynchronous visitor pattern
and introduce new techniques designed to handle distributed
delegates. The coordination of the controller and its delegates
must be considered when designing a visitor for an algorithm.
The algorithm developer must specify a delegate behavior
for each visitor, and controller commands must be specified
at the return of the visitor’s procedure. A list of delegate
behaviors is described in Table I, and a list of controller
commands is described in Table II. There are three types of
reduction operations, pre visit parent, lazy merge parent, and
post merge, that allow algorithms to distribute computation
amongst the delegates. For the controller, there is a broadcast
operation, bcast delegates, that broadcasts a visitor to all the
delegates of the controller. The visitor procedures required by
our asynchronous visitor queue framework are summarized in
Table III.

B. Visitor Queue Interface

The visitor queue has the following functionality that may
be used by a visitor or initiating algorithm:

• push(visitor) – pushes a new visitor into the distributed
queue.

• do traversal() – initializes and runs the asynchronous
traversal to completion. This is used by the initiating
algorithm.



When an algorithm needs to dynamically create new visi-
tors, they are pushed onto the visitor queue using the push()
procedure. When an algorithm begins, an initial set of visitors
are pushed onto the queue, then the do traversal() procedure is
invoked which runs the asynchronous traversal to completion.

To support efficient broadcast and reduction operations,
the distributed delegates for a vertex are arranged in a tree
structure (a delegate tree) with the root of the tree defined as
the controller. The height of the delegate tree is denoted by
htree, and the value of htree for our experiments is discussed
in Section IV-D.

C. Controller and Delegate Coordination

Operations on the controller and its delegates are coor-
dinated through asynchronous broadcast and reduction oper-
ations. The return value of the visit procedure notifies the
framework which controller action it is required to perform. A
controller can broadcast commands to all delegates of a vertex
by returning bcast delegates from the visit procedure. The
controller may choose to not broadcast a visitor by returning
terminate visit from the visit procedure.

Delegates can lazily participate in reductions by using the
lazy merge parent behavior. This instructs the visitor frame-
work to locally merge visitors, and send a merged visitor to the
parent in the reduction tree when local visitor queue is idle. We
show K-Core decomposition as an example algorithm using
this behavior. To fully reach the controller, requires O(htree)
visits.

Asynchronous filtering can be performed using the pre -
visit parent behavior. This tells the framework to immediately
send the visitor to the delegate’s parent where the pre visit
procedure will be executed. If the pre visit returns true the
visit will proceed up the delegate tree. We show Breadth-First
Search as an example algorithm using this behavior.

Post-traversal reductions are performed when the visitor’s
behavior is set to post merge. This tells the framework to
merge the visitors into the parent reduction tree after the
traversal completes. PageRank is an algorithm using this
behavior.

D. Routed point-to-point communication

In our previous work, we applied communication routing
and aggregation through a synthetic network to reduce dense
communication requirements [2]. For dense communication
patterns, where every processor needs to send messages to all
p other processors, we route the messages through a topology
that partitions the communication. Figure 3 illustrates a 2D
routing topology that reduces the number of communicating
channels a processor requires to O(

√
p). This reduction in

the number of communicating pairs comes at the expense
of message latency because messages require two hops to
reach their destination. In addition to reducing the number
of communicating pairs, 2D routing increases the amount of
message aggregation possible by O(

√
p).

In this work, we embed the delegate tree into the synthetic
routed communication topology, as illustrated in Figure 3.
In this example, delegates residing on Rank 11 are assigned
delegate parents on Rank 9 when the controller is on Rank 5.
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Fig. 3: Illustration of 2D communicator routing of 16 ranks. As
an example, when Rank 11 sends to Rank 5, the message is first
aggregated and routed through Rank 9. Delegate tree operations are
also embedded onto this topology. In this example, delegates residing
on Rank 11 are assigned delegate parents on Rank 9 when the
controller is on Rank 5. A pre visit parent originating on Rank 11
is sent to the parent on Rank 9 before being sent to the controller on
Rank 5. An illustration of a broadcast tree is also shown for Rank 5.
When Rank 5 broadcasts, it first sends to the first level {4,5,6,7}. The
second level of the broadcast is illustrated for Rank 7, which sends
to {12,13,14,15}.

A pre visit parent originating on Rank 11 is sent to the parent
on Rank 9 before being sent to the controller on Rank 5. An
illustration of a broadcast tree is also shown for Rank 5. When
Rank 5 broadcasts, it first sends to the first level {4,5,6,7}. The
second level of the broadcast is illustrated for Rank 7, which
sends to {12,13,14,15}. The value of htree is 2 when using
2D partitioning; with 3D it is 3.

Scaling to hundreds of thousands of cores requires addi-
tional reductions in communication channels. Our experiments
on IBM BG/P use a 3D routing topology that is very similar
to the 2D illustrated in Figure 3, and on the BG/P, our routing
is designed to mirror the 3D torus interconnect topology.

E. Asymptotic Effects on Hub Workload

When high degree vertices are delegated, their storage,
computation, and communication are parallelized and load
balanced. The algorithmic effects are:

• High-degree storage reduces from O(dmax) to
O(dmax

p ). The storage of high-degree vertices is now
evenly stored across the partitions. This enables all
partitions to participate in the computation and com-
munication of high-degree vertices.

• High-degree computation reduces from O(dmax) to
O(dmax

p ). The computation for high-degree vertices is
now evenly distributed across the partitions.

• High-degree communication performed through the
delegate tree reduces from O(dmax) to O(p) com-
munication and O(htree) steps. The communication
of high-degree vertices is performed using tree based
broadcasts and reductions.

The effect on performance of these optimizations is shown in
Section VI-A.



Algorithm 1 BFS & SSSP Visitor
1: visitor state: vertex ← vertex to be visited
2: visitor state: length ← path length
3: visitor state: parent ← path parent

4: delegate behavior: pre visit parent

5: procedure PRE VISIT(vertex data)
6: if length < vertex data.length then
7: vertex data.length← length
8: vertex data.parent← parent
9: return true

10: end if
11: return false
12: end procedure

13: procedure VISIT(graph, visitor queue)
14: if length == graph[vertex].length then
15: for all vi ∈ out edges(g, vertex) do

. Creates and queues new visitors
16: new len← length+ edge weight(g, vertex, vi)

. edge weight equals 1 for BFS
17: new vis← bfs visitor(vi, new len, vertex)
18: visitor queue.push(new vis)
19: end for
20: return bcast delegates
21: else
22: return terminate visit
23: end if
24: end procedure

25: procedure OPERATOR < ()(visitor a, visitor b)
. Less than comparison, sorts by length

26: return visitor a.length < visitor b.length
27: end procedure

V. VISITOR ALGORITHMS

A. Breadth-First Search & Single Source Shortest Path

The visitor used to compute the BFS level or SSSP for each
vertex is shown in Algorithm 1. Before the traversal begins,
each vertex initializes its length to∞; then a visitor is queued
for the source vertex with length = 0.

When a visitor pre visits a vertex, it checks if the visitor’s
path length is smaller than the vertex’s current length (Alg. 1,
line 14). If smaller, the pre visit updates the level information
and returns true, signaling that the main visit function may
proceed. Then, the main visit function will send new visitors
for each outgoing edge (Alg. 1, line 18). The less than
comparison procedure orders the visitors in the queue by
length (Alg. 1, line 26).

The delegate behavior is configured to pre visit parent
(Alg. 1, line 4), which means that visitors of delegated vertices
traverse up the delegate tree before reaching the controller.
Forcing visitors to traverse up the delegate tree provides the
opportunity to filter out visitors that are not part of the shortest
path.

When a visitor successfully updates the controller’s state,
the controller broadcasts the visitor to all of its delegates
(Alg. 1, line 20). If the visitor does not update the controller’s
state, then the visitor is terminated (Alg. 1, line 22).

Algorithm 2 Page-Rank Visitor
1: visitor state: vertex ← vertex to be visited
2: visitor state: rank ← partial Page-Rank value

3: delegate behavior: post merge

4: procedure PRE VISIT(vertex data)
5: vertex data.sum += rank
6: return first visit()
7: end procedure

8: procedure VISIT(graph, visitor queue)
9: for all vi ∈ out edges(g, vertex) do

. Creates and queues new visitors
10: edge rank ← rank / out degree(g, vertex)
11: new vis← pr visitor(vi, edge rank)
12: visitor queue.push(new vis)
13: end for
14: return bcast delegates
15: end procedure

16: procedure MERGE(visitor a, visitor b)
17: visitor a.rank += visitor b.rank
18: return visitor a
19: end procedure

. No visitor ordering required

B. PageRank

The visitor used to asynchronously compute the PageRank
for each vertex is shown in Algorithm 2. For our experiments,
we are concerned with the performance of a single PageRank
iteration. Many iterations may be required for convergence, de-
pending on the topology of the graph. Before the asynchronous
PageRank begins, a temporary sum is initialized to 0 for all
vertices, and a visitor containing the initial PageRank value is
queued for every vertex.

When a visitor pre visits a vertex, it simply increments
the PageRank sum for the vertex (Alg. 2, line 4), and returns
true if the vertex has not previously been visited. The visitor
framework tracks if vertices have been previously visited, and
visitors can query this by calling first visit(). The delegate
behavior is set to post merge which requires a visitor merge
function, that also simply returns a sum (Alg. 2, line 16).
When every vertex is initially visited with the initial PageRank
value, new visitors are queued for every outgoing edge (Alg. 2,
line 12). When a controller is visited, it broadcasts the visitor
to all its delegates (Alg. 2, line 14).

When the traversal completes, and the delegates have
merged their visitors, the final PageRank value has been
calculated for every vertex.

C. K-Core Decomposition

To compute the k-core decomposition of an undirected
graph, we asynchronously remove vertices from the core
whose degree is less than k. As vertices are removed, they
may create a dynamic cascade of recursive removals as the
core is decomposed.

The visitor used to compute the k-core decomposition of an
undirected graph is shown in Algorithm 3. Before the traversal
begins, each vertex initializes its k-core to degree(v) + 1 and
alive to true, then a visitor is queued for each vertex with ntrim
set to 1.



Algorithm 3 K-Core Visitor
1: visitor state: vertex ← vertex to be visited
2: visitor state: ntrim ← count of edges trimmed
3: static parameter: k ← k-core requested

4: delegate behavior: lazy parent merge

5: procedure PRE VISIT(vertex data)
6: if vertex data.alive == true then
7: vertex data.kcore← vertex data.kcore− ntrim
8: if vertex data.kcore < k then
9: vertex data.alive← false

10: return true
11: end if
12: end if
13: return false
14: end procedure

15: procedure VISIT(graph, visitor queue)
16: for all vi ∈ out edges(g, vertex) do
17: new visitor ← kcore visitor(vi, 1)
18: visitor queue.push(new visitor)
19: end for
20: return bcast delegates
21: end procedure

22: procedure MERGE(visitor a, visitor b)
23: visitor a.ntrim += visitor b.ntrim
24: return visitor a
25: end procedure

. No visitor order required

The visitor’s pre visit procedure decrements the vertex’s
k-core number by ntrim, and checks if it is less than k (Alg. 3,
line 8). If less, it sets alive to false and returns true, signaling
that the visitors’s main visit procedure should be executed
(Alg. 3, line 10). The visit function notifies all neighbors
of vertex that it has been removed from the k-core (Alg. 3,
line 18). After the traversal completes, all vertices whose alive
equals true are a member of the k-core.

The delegate behavior is configured to lazy merge parent
(Alg. 3, line 4), which means that visitors of delegated vertices
are lazy merged up the delegate tree before reaching the
controller. Visitors are merged using the procedure shown in
Alg. 3, line 23. Merging visitors before visiting the controller
reduces the number of times the controller is required to
execute the pre visit procedure.

VI. EXPERIMENTS

In this section we experimentally evaluate the performance
and scalability of our approach. We use the IBM BG/P Intrepid
supercomputer at Argonne National Laboratory [20] up to
131K processors to show scalability to large core count. We
also use Cab [21] at Lawrence Livermore National Laboratory,
which is a standard HPC Linux cluster with an Infiniband
interconnect. We begin by exploring the effects of varying the
delegate degree threshold. Next, we show a weak scaling study
for Breadth-First Search, Single Source Shortest Path, K-Core
Decomposition and PageRank, followed by comparisons to our
previous edge list partitioning [2] and 1D partitioning. Finally,
we compare performance to the best known Graph500 perfor-
mance for Intrepid which uses a 2D partitioning approach [6].

For this experimental study, the only optimization specific
to IBM BG/P is matching the routed communication topology

to the 3D torus as discussed in Section IV-D. We use the
Graph500 performance metric of Traversed Edges per Sec-
ond (TEPS) for both BFS, SSSP and PageRank. Similar to
TEPS, we used the rate of trimmed edges per second as the
performance metric for K-Core Decomposition.

A. Effects of Delegate Degree Threshold

The delegate degree threshold (dhigh) is the threshold at
which vertices are selected to be delegated. Vertices whose
degree is less than dhigh are 1D partitioned, while those above
the threshold are delegate partitioned.

We explore the scaling effects of dhigh on overall perfor-
mance, number of co-located edges, and partition imbalance,
shown in Figure 4. For a fixed graph size of 230 vertices, using
4096 cores, we demonstrate the performance effects of (a)
BFS and (b) PageRank as dhigh is scaled. The best performing
degree threshold for both BFS and PageRank is 4096 (equal
to the number of cores). Decreasing dhigh results in a higher
percentage of co-located edges (Fig. 4(c)). However, when the
threshold decreases below 4096, the broadcasts to all partitions
become wasteful as many delegates will have zero edges on
some partitions. At large values of dhigh, the partitioning
reduces to a 1D partitioning with fewer vertices selected to
become delegates. In addition to reducing overall performance,
the partition imbalance increases when few delegates are
created (Fig. 4(d)).

The optimal dhigh is roughly equal to the number of cores
(p), so for the remainder of our delegate experiments we set
dhigh equal to p. This means that dhigh increases during our
weak-scaling studies.

B. Weak Scaling of BFS and PageRank

The weak scaled performance using distributed delegates
on BG/P Intrepid is shown in Figures 5(a) and 5(b) for BFS and
PageRank, respectively. The approach demonstrates excellent
weak-scaling up to 131k cores with 235 vertices. There are 218

vertices per core, with the largest scale graph having 235.

C. Weak Scaling of SSSP and K-Core Decomposition

The weak scaled performance using distributed delegates
on Cab at LLNL is shown in Figure 6 for SSSP and K-Core
decomposition. In addition to good scaling, this demonstrates
the portability of our approach to a broader class of HPC re-
sources. For SSSP, edges are randomly weighted with integers
ranging [1, 230).

D. Comparison to 1D and edge partitioning

We compare distributed delegate partitioning to our pre-
vious work on edge-list partitioning [2] and 1D partitioning
in Figure 7. 1D partitioning is widely used by many graph
libraries such as PBGL [22], and is used in these experiments
as a baseline. For this experiment, the number of vertices
per core have been reduced to prevent 1D partitioning from
exhausting local partition memory due to imbalance. Also,
the experiments are limited to 4096 cores due to increasing
hub growth causing additional imbalance. At 4096 cores, our
delegate partitioning is 42% faster than edge-list partitioning
and 2.3x faster than 1D. PBGL was not able to run with more
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Fig. 4: Effects of delegate degree threshold (dhigh) using 4096 cores on graphs with 230 vertices. The performance effects of (a) BFS and
(b) PageRank, (c) the effects on the percentage of co-located edges, (d) partition imbalance are shown.
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Fig. 5: Weak scaling of (a) BFS and (b) PageRank on BG/P Intrepid. There are 218 vertices per core, with the largest scale graph having
235 vertices.
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Fig. 6: Weak scaling of delegate partitioned SSSP (a) and K-Core (b) on Cab Linux cluster at LLNL. There are 220 vertices
per core, with the largest scale graph having 232 vertices. For SSSP, edges are randomly weighted with integers ranging [1, 230).
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graphs shown on BG/P. Important note: the graph sizes are reduced
to prevent 1D from running out of memory. There are 217 vertices
and 221 undirected edges per core.

than 512 processors without exhausting available memory. At
512 cores, our delegate partitioning is 5.6x faster than PBGL.

E. Comparison to previous Graph500 results

We compare distributed delegates to the best known perfor-
mance for Intrepid [6] on the Graph500 list in Figure 8. Our
approach demonstrates excellent weak scaling, and achieves
93.1 GTEPS on a Scale 35 Graph500 input using 131k cores.
The delegates approach outperforms the current best known
Graph500 performance for Intrepid by 15%.

VII. RELATED WORK

Willcock, et al. have developed an active message model
related to our routed communication [23]. Active messages
are routed through a synthetic hypercube network to improve
dense communication scalability. A key difference from our
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Fig. 8: Weak scaling of delegate partitioned BFS on BG/P Intrepid.
Compared to Intrepid BFS performance from the Graph500 list,
delegate partitioning is 15% faster than best results published for
Intrepid on the Graph500 list. There are 218 vertices per core, with
the largest scale graph having 235 vertices.

work is that their approach has been designed for the Bulk
Synchronous Parallel (BSP) model.

The Pregel graph library [24] also uses a vertex-centric
computation model and is designed to be Bulk Synchronous
Parallel (BSP). The STAPL Graph Library [25], [26] provides
a framework that abstracts the user from data-distribution
and parallelism and supports asynchronous algorithms that are
agnostic to the graph partitioning.

Techniques to partition high-degree vertices have also been
explored by Kuhlemann and Vassilevski [27], which uses
a disaggregation technique to break up hubs for mat-vec
operations. The mat-vec operations for the original graph are
performed via a factored triple matrix vector product involving
an embedding graph. Unlike our work, this technique employs
a 1D partitioning.



VIII. CONCLUSION

In this work, we present a novel technique to parallelize
the storage, processing, and communication of high-degree
vertices in large scale-free graphs. To balance the processing
workload, we distribute hub data structures and related com-
putation among a set of delegates. Computation is coordinated
between the delegates and their controller through a set of
commands and behaviors.

Our delegate technique leads to significant communication
reduction through the use of asynchronous broadcast and
reduction operations. For hubs whose degree is greater than
the number of processing cores, p, using delegates reduces the
required volume of communication.

We demonstrate the approach and evaluate performance
and scalability using Breadth-First Search (BFS), Single
Source Shortest Path (SSSP), K-Core Decomposition, and
PageRank on synthetically generated scale-free graphs. We
demonstrate scalability up to 131K cores using the IBM BG/P
supercomputer, and show portability on a typical HPC linux
cluster. Our algorithm improves the best known Graph500
results for BG/P Intrepid, a custom BG/P implementation, by
15%.
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[4] A. Buluç and K. Madduri, “Parallel breadth-first search on distributed

memory systems,” in Supercomputing, 2011.
[5] A. Yoo, A. Baker, R. Pearce, and V. Henson, “A scalable eigensolver for

large scale-free graphs using 2D graph partitioning,” in Supercomputing,
2011, pp. 1–11.

[6] F. Checconi, F. Petrini, J. Willcock, A. Lumsdaine, A. R. Choudhury,
and Y. Sabharwal, “Breaking the speed and scalability barriers for
graph exploration on distributed-memory machines,” in Supercomput-
ing, 2012.

[7] A. Barabási and R. Albert, “Emergence of scaling in random networks,”
Science, vol. 286, no. 5439, pp. 509–512, 1999.

[8] T. Cormen, Introduction to algorithms. The MIT press, 2001.
[9] E. Dijkstra, “A note on two problems in connexion with graphs,”

Numerische mathematik, vol. 1, no. 1, pp. 269–271, 1959.
[10] L. Page, S. Brin, R. Motwani, and T. Winograd, “The pagerank citation

ranking: bringing order to the web.” 1999.
[11] S. B. Seidman, “Network structure and minimum degree,” Social

Networks, vol. 5, no. 3, pp. 269 – 287, 1983.
[12] D. Chakrabarti, Y. Zhan, and C. Faloutsos, “R-MAT: A recursive model

for graph mining,” in Proceedings of the Fourth SIAM Int. Conf. on Data
Mining. Society for Industrial Mathematics, 2004, p. 442.

[13] J. G. Siek, L.-Q. Lee, and A. Lumsdaine, The Boost Graph Library:
user guide and reference manual. Boston, MA, USA: Addison-Wesley
Longman Publishing Co., Inc., 2002.
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[17] A. Buluç and J. Gilbert, “On the representation and multiplication of
hypersparse matrices,” in IEEE International Symposium on Parallel
and Distributed Processing (IPDPS). IEEE, 2008, pp. 1–11.

[18] E. G. Boman, K. D. Devine, and S. Rajamanickam, “Scalable matrix
computations on large scale-free graphs using 2d graph partitioning,” in
Supercomputing. New York, NY, USA: ACM, 2013, pp. 50:1–50:12.

[19] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin, “Pow-
ergraph: Distributed graph-parallel computation on natural graphs,” in
Proc. of the 10th USENIX Symposium on Operating Systems Design
and Implementation (OSDI), 2012, pp. 17–30.

[20] “IBM BG/P Intrepid,” in https://www.alcf.anl.gov/intrepid.
[21] “Cab at LLNL,” in https://computing.llnl.gov/resources.
[22] D. Gregor and A. Lumsdaine, “The parallel BGL: A generic library

for distributed graph computations,” in In Parallel Object-Oriented
Scientific Computing (POOSC), 2005.

[23] J. Willcock, T. Hoefler, N. Edmonds, and A. Lumsdaine, “Active peb-
bles: parallel programming for data-driven applications,” in Proceedings
of the International Conference on Supercomputing. ACM, 2011, pp.
235–244.

[24] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N. Leiser,
and G. Czajkowski, “Pregel: a system for large-scale graph processing,”
in Proceedings of the 2010 ACM SIGMOD International Conference on
Management of data. ACM, 2010, pp. 135–146.

[25] Harshvardhan, A. Fidel, N. M. Amato, and L. Rauchwerger, “The
STAPL Parallel Graph Library,” in Int. Workshop on Languages and
Compilers for Parallel Computing (LCPC), 2012.

[26] ——, “KLA: A new algorithmic paradigm for parallel graph compu-
tations,” in IEEE Int. Conf. on Parallel Architectures and Compilation
Techniques (PACT), 2014.

[27] V. Kuhlemann and P. S. Vassilevski, “Improving the communication
pattern in mat-vec operations for large scale-free graphs by disaggre-
gation,” Lawrence Livermore National Laboratory, Tech. Rep. LLNL-
JRNL-564237, July 2012.


